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We study a class of models incorporating threshold-activated coupling on a lattice of chaotic elements,
evolving under updating rules incorporating varying degrees of synchronicity. Interestingly, we observe that
asynchronous updating, both random and sequential, yields more spatiotemporal order than parallel �synchro-
nous� updating. Further, the order induced by random asynchronous updating is very robust and occurs even
for small asynchronicities in the temporal evolution of the local dynamics. So this case study suggests a very
different mechanism for inducing regularity in extended systems.
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I. INTRODUCTION

A basic aim of modeling in physics is to provide sugges-
tive conceptual frameworks for understanding complex phe-
nomena which are generic in physical systems. The hope is
to build prototypes that can yield a repertoire of dynamics
reminiscent of behavior observed in systems where spatial
extent is important, for instance pattern formation �such as
dislocation dynamics, intermittency in space time, spatial
patterns�, Josephson junction arrays, neural dynamics,
coupled systems of optically bistable devices, electron-hole
plasmas, and even parallel computing and evolutionary biol-
ogy �1�. One of the important prototypes of extended com-
plex systems are nonlinear dynamical systems with spatially
distributed degrees of freedom, or alternately spatial systems
composed of large numbers of low-dimensional nonlinear
systems. The basic ingredients of such systems are �i� cre-
ation of local chaos or local instability by a low-dimensional
mechanism and �ii� spatial transmission of energy and infor-
mation.

Now many results have been obtained for the time evolu-
tion of coupled nonlinear systems under parallel �or synchro-
nous� updating. In such models all individual local maps of
the lattice are iterated forward simultaneously. Here on the
other hand, we will focus on asynchronous evolution, where
the updates are not concurrent. There have been a few stud-
ies on asynchronously evolving extended dynamical systems
�2–9�, and there are strong reasons to revisit this fundamental
issue in the light of the fact that asynchronous updating can
be closer to physical reality than synchronous updates in
certain situations. So in the physical situations where a
coupled system is comprised of a collection of elemental
dynamical units which evolve asynchronously, the lattice dy-
namical model must of course employ asynchronous updat-
ing schemes. It is then of importance to investigate the ef-
fects of asynchronicity �if any� in prototype models.

Specifically, in this paper we will focus on a class of
systems incorporating threshold-activated coupling on a lat-
tice of nonlinear dynamical elements �10�. We investigate the
range of pattern formation obtained under varying degrees of
synchronicity, for different threshold levels and relaxation
times.

The basic motivation behind this work is to identify
whether synchronicity of the local �nonlinear� dynamics
makes a significant difference to the spatiotemporal behavior
emerging from the extended interactive system �10�. The re-
sults from this test bed would be a strong indicator of what to
expect from similar models. What we will show in this study
is that asynchronous updating leads to more ordered behav-
ior than simultaneous updating. The details of the model and
our results are described in the sections below.

II. MODEL

In our model, time is discrete, labeled by n. Space �or the
local node� is labeled by sets of integers, for instance, in the
one-dimensional case by i, i=1,N, where N is the system
size. The state variable xn�i� �which in physical systems
could be quantities like energy, velocity, pressure or concen-
tration� is continuous. Each individual site in the lattice
evolves under a suitable nonlinear map f�x�. For instance,
the local map f�x� �x� �0,1�� can be chosen to be the chaotic
logistic map xn+1=�xn�1−xn� ��=4.0� or the tent map xn+1

=1−2�xn− 1
2 �. Such maps have widespread relevance as pro-

totypes of low-dimensional chaos.
Now, on this nonlinear lattice a threshold-activated cou-

pling is incorporated �10–12�. The coupling is triggered
when a site in the lattice exceeds the critical value x�, i.e.,
when a certain site xn�i��x�. The supercritical site then
relaxes �or “topples”� by transporting the excess �= �xn�i�
−x�� equally to its two neighbors,

xn�i� → x�,

xn�i − 1� → xn�i − 1� + �/2,

xn�i + 1� → xn�i + 1� + �/2. �1�

The process above occurs in parallel, i.e., all supercritical
sites at any instant relax simultaneously, according to Eqs.
�1�, and this constitutes one relaxation time step. After r such
relaxation steps, the system undergoes the next chaotic up-
date. In some sense then, time n associated with the chaotic
dynamics is measured in units of r. The relaxation of a site
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may initiate an avalanche of relaxation activity, as neighbor-
ing sites can exceed the threshold limit after receiving the
excess from a supercritical site, thus starting a domino effect.
This induces a bidirectional transport to the two boundaries
of the array. These boundaries are open so that the snowball-
ing “excess” may be transported out of the system. After r
relaxation steps the next dynamical update of the sites oc-
curs.

The threshold mechanism is reminiscent of the Bak-Tang-
Wiesenfeld cellular automata algorithm �13�, or the “sand-
pile” model. This model gave rise to self-organized criticality
�SOC�, and commanded extensive research interest. The
model here is however significantly different, the most im-
portant difference being that the threshold mechanism now
occurs on a nonlinearly evolving substrate, i.e., there is an
intrinsic deterministic dynamics at each site. So the local
chaos here is like an internal driving or perturbation, as op-
posed to external perturbation/driving in the sandpile model,
which is effected by dropping “sand” from outside.

The discrete-valued driven-from-outside “sandpile” mod-
els of self-organized criticality have been relevant in phe-
nomena ranging from earthquakes to ecology �14�. Our
modified scenario with continuous state variables and intrin-
sic driving from local instabilities, should also be relevant to
the range of phenomena addressed by the more idealized
“sandpile” model �15�. Different natural or human engi-
neered situations will of course necessitate modifications of
this basic model, in order to suit the specifics of the phenom-
ena it attempts to capture. However, the study of the gener-
alized abstract model can serve as a test bed for understand-
ing the wide class of extended systems coupled by threshold
responses.

In particular, this kind of threshold �pulse� coupled dis-
tributed systems are relevant for describing integrate-and-fire
oscillators �16�. Also certain mechanical systems like chains
of nonlinear spring blocks and the phenomena of fracture
and crack propagation in materials �17� can be described by
variants of this model. Further, some biological phenomena
particularly in ecology, such as population migrations could
be well captured by such a model. For instance, it is reason-
able to model the population of an area �state at a site� as a
logistic map and when this population exceeds a certain criti-
cal amount the excess population moves to a neighboring
area �site�. The spatiotemporal dynamics resulting from such
a model mimics the movement of population among geo-
graphical regions. Last, in the context of engineering and
computer science, the phenomena arising from this model is
relevant to asynchronous artificial neural network models
�18�.

The spatiotemporal behavior of the lattice under different
threshold levels x�, for the case of r→� �namely the situa-
tion where the array relaxes fully before the subsequent cha-
otic update�, was investigated both numerically and analyti-
cally in �10–12�. Specifically, for the case of networks of
chaotic logistic maps �f�x�=4x�1−x�� there exist many
phases in x� space �0�x��1� �11�. For example, for x�

�3/4 the dynamics goes to a fixed point. When 0.75�x�

�1.0, the dynamics is attracted to cycles whose periods de-
pend on the value of x�. By tuning x� one thus obtains spa-
tiotemporal cycles of varying orders.

Note however, that the dynamical outcome crucially de-
pends the relaxation time r, i.e., on the time scales for au-
tonomously updating each site and propagating the
threshold-activated coupling between sites. As mentioned
above, the limiting case of large r has been extensively stud-
ied. Since the local chaos in the maps can be thought of as
“intrinsic” perturbation, this case corresponds to the “dilute”
perturbation limit. When r→�, the system is fully relaxed
before the subsequent dynamical update. So the time scales
of the two processes, the intrinsic chaotic dynamics of each
site and the threshold-activated relaxation, are separable.
Here the relaxation mechanism is much faster than the cha-
otic evolution, enabling the system to relax completely be-
fore the next chaotic iteration. This scenario is similar to the
SOC model, where the driving force �perturbation� is very
dilute, e.g., in the sandpile model the avalanche of activity,
initiated by an external “sand grain” dropped on the pile,
ceases before the next “sand grain” perturbs the pile.

At the other end of the spectrum is the limit of very small
r where the local dynamics and the coupling take place si-
multaneously. It is evident that lowering r essentially allows
us to move from a picture of separated relaxation processes
to one where the relaxation processes can overlap, and dis-
turbances do not die out before the subsequent chaotic up-
date. It was observed in �19� that for short relaxation times
the system is driven to spatiotemporal chaos. This is due to
the fast driving rate of the system which does not provide
enough time to spatially distribute the perturbations and al-
low the excess to propagate to the open boundaries. However
large r gives the system enough time to relax, and allows the
excess to be transported out of the system through the open
ends. So for large r the system displays very regular behavior
for a large range of threshold values.

Now in order to effectively study the influence of varying
degrees of synchronicity we investigate the following dy-
namics: We break the lattice into subsets, and update the sites
belonging to each subset simultaneously, while updating the
different subsets sequentially. We denote the number of sites
�nodes� updated together as nsync. So the fraction psync
=nsync/N serves as an effective parameter for synchronicity.
The limiting case of psync=nsync/N=1, namely nsync=N, cor-
responds to the usual parallel updates. On the other hand,
nsync=1/N, which tends to 0 as N→�, corresponds to the
completely asynchronous update. So as nsync/N takes values
from 0 to 1 �i.e., nsync takes values 1 to N�, one has decreas-
ing degrees of asynchronicity in the evolution.

One can also construct other interesting models of asyn-
chronous dynamics. For instance, one can have models
where the threshold response is asynchronous too, namely,
the threshold response occurs only after a chaotic update. So
effectively then, the threshold mechanism will operate at ran-
dom intervals, rather than at the instant a site is above the
critical value �as in our model�. Such a model would be
closer to the type of asynchronicity seen in �8�, but the con-
nection between it and the sandpilelike models of SOC will
not be straightforward. Note that in this work we will focus
only on the model given above, where the driving due to the
intrinsic chaos is asynchronous, while the threshold response
occurs whenever a site is above the critical threshold.

We investigate two cases: �i� random asynchronous up-
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dating, where the subsets of nsync sites are chosen randomly,
and changed at each iteration; �ii� sequential updating �or the
“typewriter mode”�, where the subsets are fixed and ordered,
namely the first subset runs from site index 1 to nsync, the
next from nsync+1 to 2nsync up to �N−1�nsync+1 to Nnsync. In
both cases nsync=N corresponds to the synchronous updating
limit.

In the sections below we investigate how the synchronic-
ity parameter affects the spatiotemporal characteristics of the
threshold coupled chaotic lattice, at different relaxation times
r.

III. SPATIAL PATTERNS UNDER ASYNCHRONOUS
UPDATING

Here we consider coupled logistic map arrays under
threshold coupling. We consider thresholds in the range 0
�x��0.75 . In this threshold range when relaxation time is
very long �r→�� all updating schemes yield a synchronized
spatiotemporal fixed point, with all sites xn�i��x� for all i
and n. So in the limit of long relaxation times, when all
supercritical sites in the system have the opportunity to fully
relax via the threshold mechanism, both synchronous and
asynchronous updating yield similar results.

The space-time density plot of the state variable x�i� for
threshold coupled logistic maps is shown for the case of
random, sequential, and synchronous updating �Fig. 1�. In
these figures, the top two panels show the spatiotemporal
evolution of the system updated asynchronously, one site at a
time �i.e., psync=1/N� randomly �a� and sequentially �b�. The
bottom panel show the system under synchronous updating
�namely all N sites are updated together, so psync=1�. It is
clearly evident that the system is more ordered and spatially
synchronized under asynchronous updating as compared to
its spatiotemporal state under synchronous updating.

Figures 2�a� and 2�b� show illustrative examples of the
dynamical states obtained for r=1 under random asynchro-
nous updating and sequential updating, with different de-
grees of synchronicity psync=nsync/N. Again, clearly for low
psync �more asynchronicity� the lattice is much more synchro-
nized. Also note that random asynchronous updating yields
an ordered state over a much larger range of asynchronicity
as compared to the case of sequential updating. For instance,
in Fig. 2 it is evident that for the case of random asynchro-
nous updating the range 0� psync�0.3 yields spatiotemporal
order, while for sequential updating a much smaller range
�0� psync�0.05� yields ordered states. So the order induced
by random asynchronous updating is very robust indeed, and
occurs even for small asynchronicities in the temporal evo-
lution of the local dynamics.

IV. SYNCHRONIZATION ORDER PARAMETER

We study the degree of synchronization �20� in the system
quantitatively through an average error function defined as
the mean square deviation of the spatial profile,

Z�n� =
1

N
�
i=1

N

�xn�i� − �xn	�2, �2�

where �xn	 is the average �1/N�i=1,Nxn�i�� of the spatial pro-
file at time n. We denote this quantity averaged over time n

and over different realizations as �Z	. When �Z	=0, we have
complete synchronization. Higher values of �Z	 indicate
lower degree of synchronization.

We also compute the average error function normalized
by the average value of x in the array, namely,

Z�n� =
1

N
�
i=1

N
�xn�i� − �xn	�2

�xn	2 . �3�

We denote this quantity averaged over time n and over dif-

ferent realizations as �Z̄	. Again, higher values of �Z̄	 indicate
lower degree of synchronization.

Figure 3 displays �Z̄	 for very short relaxation time r=1
and very long relaxation time r=1000, under random updat-
ing and sequential updating. In the case of random updating,

the synchronization error Z̄ remains low for reasonably high
values of synchronicity psync. In the case of sequential updat-
ing there is a sharp transition from the synchronous to the
nonsynchronous state, signaled by a jump in the synchroni-

zation error Z̄, at fairly low values of psync. For instance, this

FIG. 1. �Color online� Space-time density plots of an array of
threshold coupled logistic maps, with threshold value x�=0.5, size
N=100 and relaxation time r=1. The top two panels show the cases
of �a� random and �b� sequential updating, with nsync=1. The bot-
tom panel �c� shows the case of synchronous updating with nsync

=100 �i.e., psync=1�. The horizontal axis denotes the time and the
vertical axis denotes the site index.
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occurs around nsync=5 �psync=nsync/N� in the case of r=1
�see Fig. 3�. Again this indicates that random updating yields
ordered states over a wider range of psync than sequential
updating does.

Further the synchronization error Z̄ is studied for different
threshold values x� �see Figs. 4 and 5�. For instance, Fig. 4

shows Z̄ over a range of threshold values, for the coupled
maps evolved under random �nsync=1�, sequential �nsync=1�,
and synchronous �nsync=N� updating schemes, with relax-

ation time r=1. Figure 5 shows Z̄ as a function of varying
degrees of synchronicity psync, for random and sequential
updating. Clearly all these results demonstrate that random
and sequential updating yields more order, namely, lower
synchronization error, than synchronous updating for all
threshold values.

As a specific illustrative example, consider the implica-
tions of these results for migrating populations. As men-
tioned earlier, a nonlinear map, in particular, the logistic
map, is a reasonable model for the population of a geo-
graphical location and/or area �site�. If this population is too

large, migration of the excess to neighboring locations oc-
curs. The threshold is given by the sustainable population at
the location. Now the results above would suggest that, if the
growth at the locations is asynchronous the resulting popu-
lation distribution among locations would be more evenly
distributed. If, on the other hand, the population growth in
different locations are synchronous, the population distribu-
tion of the locations will be very nonuniform and the popu-
lation profile will be more irregular.

V. CRITICAL RELAXATION TIME

We observe that there is a critical value of relaxation time
r after which the spatiotemporal behavior of the system is
quite indistinguishable from the very long relaxation time
limit. We denote this value of relaxation time as rc. So the
behavior of the system with r�rc is essentially the same as
for r→�. Recall that the spatiotemporal dynamics in the
threshold range 0�x��3/4, in the infinite relaxation time
scenario, yields a spatiotemporal fixed point with all sites at
x�. This implies that rc is the smallest relaxation time at
which the system yields nearly zero synchronization error.

Now this critical relaxation time rc is naturally system-
size dependent, and we observe that it varies as N	 for large

FIG. 2. �Color online� Density plots of the state of an array of
threshold coupled logistic maps, at an instant of time, with thresh-
old value x�=0.5, size N=100 and relaxation time r=1. The
coupled maps evolve under �a� random asynchronous and �b� se-
quential updating, with varying degrees of synchronicity psync. The
vertical axis denotes the site index and the horizontal axis denotes
the value of psync �0� psync�1�.

FIG. 3. The synchronization order parameter Z̄ as defined in the
text vs the degree of synchronicity psync �0� psync�1� for an array
of threshold coupled logistic maps, with threshold value x�=0.5,
size N=100 and relaxation time r=1 and 1000. The coupled maps
evolve under random updating in �a� and sequential updating in �b�.

SHRIMALI, SINHA, AND AIHARA PHYSICAL REVIEW E 76, 046212 �2007�

046212-4



N, with 1�	�2. The value of 	�2 for synchronous up-
dating schemes, while 	�3/2 for sequential updating and
	�1 for random asynchronous updating �see Fig. 6�. If the
movement of the “excess” via threshold-activated transport
from the interior to the open edges is like a random walk,
one would expect the time taken for the excess from the bulk
to reach the open ends, which determines the critical relax-
ation time rc, to scale with system size as N2. So it appears
that for synchronous updating the transport is effectively ran-
dom walklike, while it is super diffusive for asynchronous
updating, with the sequential case being Levy flightlike and
the random updating effectively behaving as ballistic trans-
port.

We also find that the critical relaxation time rc decreases
with increasing asynchronicity in the evolution �see Fig. 7�,
i.e., the spatiotemporal dynamics is quite indistinguishable
from the infinite relaxation time limit �when synchronization
error is close to zero� at smaller relaxation times for more
asynchronous updating. Namely, the system yields synchro-
nization sooner, as the asynchronicity in the evolution in-
creases.

The average critical relaxation time rc, where the synchro-
nization error becomes zero, is plotted in Fig. 8 as a function
of threshold value x�, with the coupled maps evolving under
random, sequential, and synchronous updating. Clearly,
asynchronous updating has lower rc for all values of thresh-
old.

In order to check the generics of our results, we have also
studied systems with the local dynamics given by different

one-dimensional maps, as well as the case of higher dimen-
sional lattices. We find that these models also show similar
results, namely, asynchronous updating yields more spatial
order than synchronous updating in all cases. This suggests
that the regularizing effect of asynchronicity may be quite
general and broadly applicable.

VI. ANALYSIS

A. Local dynamics

First consider the effect of the threshold response on a
single element evolving under a chaotic map f�x�. The
threshold condition implies that when the dynamical state of
the element exceeds a threshold x�, it relaxes down to x�,
namely, the evolution of the element is governed by the func-
tion xn+1= f�xn� when xn+1�x�, but xn+1=x� when xn+1�x�.
For the single element the excess is “transported” out of the
element when it exceeds threshold �as it is an effective open
edge for transport in either direction�.

The effective map f�x� of the threshold chaotic dynamics
is a “beheaded” or “flat-top” nonlinear map, with xn+1=x�

when f�xn��x�. This effective map supports a stable fixed
point x=x� for thresholds x� lower than xfixed, where xfixed is
the �unstable� fixed point solution of the chaotic map f�x�.
The fixed point x=x� can be obtained graphically by the

FIG. 4. The synchronization order parameter Z̄ as defined in the
text with respect to threshold value x�, for an array of threshold
coupled logistic maps, with relaxation time r=1. The coupled maps
evolve under random �nsync=1�, sequential �nsync=1�, and synchro-
nous �nsync=N� updating.
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FIG. 5. �Color online� The synchronization order parameter Z̄ as
defined in the text vs. the degree of synchronicity psync �0� psync

�1� for an array of threshold coupled logistic maps, with threshold
value x�=0.1 �solid�, 0.4 �dashed�, and 0.7 �dotted�, size N=100
and relaxation time r=1. The coupled maps evolve under random
updating in �a� and sequential updating in �b�.
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intersection of the xn+1=xn line with the flat portion of the
threshold chaotic map f�x�, and this fixed point is super
stable as the slope at the intersection is zero. For instance, for
the case of the logistic map, where xfixed=3/4, the range of
thresholds under which a single chaotic element yields a

stable fixed point at x� is 0�x��3/4 �11�. This is in marked
contrast to the dynamics without threshold which is strongly
chaotic.

The fact that all thresholds x��xfixed will yield a fixed
point for a single element can also be seen from the fact that
the map xn+1= f�xn� is above the line xn+1=xn when xn

�xfixed. Since the system is ergodic, x is guaranteed to ex-
ceed x�. Now starting from xn=x� one immediately obtains
that the subsequent chaotic update will yield a state greater
than x�. This supercritical state will be clipped back, under
the threshold mechanism, to x�: so x will always be equal
to x�.

Now in an array of maps with thresholds in the fixed point
regime, the threshold-activated transport leads to the indi-
vidual elements relaxing toward the fixed point at x� of the
individual threshold maps f�x�. So in the limit of long relax-
ation times, namely r→�, asymptotically x�i�→x�. But
when the relaxation time between chaotic updates is small all
the “excess” of the system will not have the time to move out
to the open boundaries, and all the sites will not be at x=x�.
For synchronous local dynamics, for low r this is what hap-
pens, and one obtains very irregular spatial profiles with
complete lack of spatial coherence. The remarkable thing
however is that, when the elements evolve asynchronously,
even for very low r �for instance, r=1� the system attains a
great degree of spatial coherence.

In the following sections we will specifically consider the
robustness of a synchronized spatial profile, where all sites i
are at the critical value x�. Now after a chaotic update, i.e.,
just at the onset of the relaxation process �r=0� the updated
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FIG. 6. Critical relaxation time rc vs. system size N, for an array
of threshold coupled logistic maps. The case of random and sequen-
tial updating �with nsync=1�, as well as synchronous updating
�nsync=N� is shown here.

FIG. 7. Critical relaxation time rc vs the degree of synchronicity
psync, for an array of threshold coupled logistic maps. The case of
sequential updating is shown here.

FIG. 8. The average critical relaxation time rc, where the syn-
chronization error becomes zero, is plotted as a function of thresh-
old value x�, for an array of threshold coupled logistic maps. The
cases of asynchronous updating �random updating and sequential
updating�, and synchronous updating are displayed.
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sites will be at the state f�x��. In the fixed point region of
threshold parameter space �0�x��0.75�, this implies that
all the updated sites are above threshold, as f�x���x�. So all
updated sites under the threshold response will transport the
excess amount �f�x��−x�� on to the neighboring sites. Now
the pertinent question here is how much and how quickly the
uniform profile is distorted in the case of synchronous and
asynchronous updating.

Qualitatively, in the case of synchronous updating the en-
tire lattice updates together. When r is large the system has
enough time to relax and this deviation is evened out as the
excess is transported out of the open edges. So the control-
ling effect of the threshold-activated relaxation removes the
deviation by moving the perturbing amount out of the array
from the open ends. However, when r is small, say r=1, then
the deviation is magnified from update to update, as the de-
viation does not have the time to be transported out of the
open boundaries. So deviations grow rapidly and destroy co-
herence in space. For completely asynchronous updating on
the other hand, for the case of r=1, after any one site under-
goes a chaotic update, there is a threshold-activated relax-
ation across the lattice. So the perturbing influence of the
chaotic evolution is dilute in space, and the deviation has
time to move toward the open edges and be transported out

of the system. In the following sections we will analyze more
exactly this qualitative argument.

B. Analysis of threshold coupled elements under unidirectional
transport

First consider the simpler situation of a threshold coupled
lattice of N elements under unidirectional transport, namely,
a one-way coupled lattice. Here a supercritical site xn�i� re-
laxes by transporting the excess �= �xn�i�−x�� in one direc-
tion to one neighbor �say i+1�. We start with a uniform
initial state where all the elements initially are at values
x�i�=x� , i=1, . . . ,N.

It is clear from Table I that under synchronous updating
all the elements have states different from x� after very first
chaotic updates. The spatial nonuniformity increases in time
with each chaotic update, and after N chaotic updates no two
sites of the initially uniform lattice have the same state even
if �f�x��−x�� is very small. So the system is completely de-
synchronized.

However under sequential updating �see Table II�, starting
from a uniform profile, the number of sites in the lattice that
are different from x� is always one, as the sites get updated
one by one. So after N updates the system has only one site

TABLE I. Evolution of the state of an array of N elements with an initial uniform profile, under synchro-
nous chaotic updates. Here the transport is in one direction, namely if site i is above threshold it will transfer
the excess to its neighbor i+1. The boundary at i=N is open. There is one relaxation step �r=1� between the
chaotic updates. Here, �1= f�x��−x�, �2= f�x�+�1�−x���1�1+ f��x��� , . . . , �N= f�x�+�N−1�−x���1�1
+ f��x��+ f�2�x��+ f�3�x��+¯� under the assumption that �1�1.

Initial state x�1�=x� x�2�=x� x�3�=x� x�N−1�=x� x�N�=x�

Chaotic update step 1 f�x�� f�x�� f�x�� f�x�� f�x��
Relaxation step r=1 x� x�+�1 x�+�1 x�+�1 x�+�1

Chaotic update step 2 f�x�� f�x�+�1� f�x�+�1� f�x�+�1� f�x�+�1�
Relaxation step r=1 x� x�+�1 x�+�2 x�+�2 x�+�2

Chaotic update step N−1 f�x�� f�x�+�1� f�x�+�2� f�x�+�N−2� f�x�+�N−2�
Relaxation step r=1 x� x�+�1 x�+�2 x�+�N−2 x�+�N−1

Chaotic update step N f�x�� f�x�+�1� f�x�+�2� f�x�+�N−2� f�x�+�N−1�
Relaxation step r=1 x� x�+�1 x�+�2 x�+�N−2 x�+�N−1

TABLE II. Evolution of the state of an array of N elements, starting with a uniform spatial profile, under
sequential updating. Here the transport is in one direction, namely if site i is above threshold it will transfer
the excess to its neighbor i+1. The boundary at i=N is open. There is one relaxation step �r=1� between the
chaotic updates. Here, f�x��=x�+�1 , f�x�+�1�=x�+�2 , . . . , f�x�+�N−1�=x�+�N.

Initial state x�1�=x� x�2�=x� x�3�=x� x�N−1� x�N�=x�

Chaotic update 1 f�x�� x� x� x� x�

Relaxation x� x�+�1 x� x� x�

Chaotic update 2 x� f�x�+�1� x� x� x�

Relaxation x� x� x�+�2 x� x�

Chaotic update N−1 x� x� x� f�x�+�N−2� x�

Relaxation x� x� x� x� x�+�N−1

Chaotic update N x� x� x� x� f�x�+�N−1�
Relaxation x� x� x� x� x�
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different from x�, and all other sites at x�. So clearly sequen-
tial updating manages to preserve the uniformity of the initial
spatial profile.

From another point of view, for the case of synchronous
updating, on an average, excess of the order of N� is created
after every chaotic update, while only that of the order of � is
transported out every relaxation step. So the perturbation
cannot die down when r�1. So at the end of N chaotic
updates the total excess remaining in the system is =�i=1

N−1�i,
while the excess transported out is only �N. So the excess
remaining in the system �which is a source of local instabil-
ity� is far larger than the excess transported out �which al-
lows the system to relax�. This imbalance is the source of
spatial disorder in synchronously evolving systems.

For asynchronous updating �random or sequential� on the
other hand, the total excess created is of the order of � every
chaotic update. Specifically for sequential updating, after N
chaotic updates, the excess in the lattice is �N and the excess
transported out is also �N �see Table II�. This leaves the spa-
tial profile completely uniform again, in sharp contrast to the
situation under synchronous updates. So what allows the sys-
tem to be more ordered under asynchronous updating is the
steady state between the generation of disturbance and the
transport of the perturbing amount from the open system. For

sequential updating this balance is exact, and for random
updating this holds true statistically.

C. Analysis of threshold coupled elements under bidirectional
transport

Now we will analyze in some more detail how the spatial
profile changes under bidirectional transport �extensive re-
sults from the numerical simulation of this situation are pre-
sented in Secs. III–V�. Consider a lattice of N elements, with
all the elements initially at x�i�=x� , i=1, . . .N. Tables III
and IV show how the elements evolve for the cases of syn-
chronous and sequential updating with relaxation time r=1.
It is clear that under synchronous updating all the elements
have states different from x� after the very first chaotic up-
date. However, under sequential updating, starting from a
uniform profile, the number of sites in the lattice that are
different from x� is 1, 2, 2, 3, 3, 4, 4, . . . �see Table IV�, as the
sites get updated one by one. So after N updates the system
differs at around N /2 sites from x�. So clearly, synchronous
updating moves the spatial profile away from the fixed point
faster than asynchronous updating.

Again another way of understanding this phenomenon is
to consider the total disturbance in the system. This is the

TABLE III. State of an array of N elements with a uniform spatial profile, after synchronous chaotic
updates. Here the transport is in both directions, namely if site i is above threshold it will transfer the excess
equally to its two neighbors i−1 and i+1. The boundaries at i=1 and i=N are open. There is one relaxation
step �r=1� between the chaotic updates, and �= f�x��−x�, ��= f�x�+��−x�, ��= f�x�+� /2�−x�. Due to the
isotropy of the transport, one has the symmetry: x�i�=x�N+1− i�. It is also evident that after the very first
chaotic update �and the consequent relaxation� all elements become different from x�, with the boundary
elements differing from the bulk. Subsequently, at every chaotic update two additional elements become
dissimilar.

Initial state x�1�=x� x�2�=x� x�3�=x� x�N−2�=x� x�N−1�=x� x�N�=x�

Chaotic update step 1 f�x�� f�x�� f�x�� f�x�� f�x�� f�x��
Relaxation step r=1 x�+ �

2
x�+� x�+� x�+� x�+� x�+ �

2

Chaotic update step 2 f�x�+ �
2

� f�x�+�� f�x�+�� f�x�+�� f�x�+�� f�x�+ �
2

�
Relaxation step r=1 x�+ ��

2 x�+ ��
2 + ��

2
x�+�� x�+�� x�+ ��

2 + ��
2 x�+ ��

2

TABLE IV. State of an array of N elements, starting with a uniform spatial profile, after sequential
updating. Here the transport is in both directions, namely if site i is above threshold it will transfer the excess
equally to its two neighbors i−1 and i+1. The boundaries at i=1 and i=N are open. There is one relaxation
step �r=1� between the chaotic updates. Here, �= f�x��−x�, ��= f�x�+� /2�−x�, ��= f�x�+�� /2�−x�, and
��= f�x�+�� /2�−x�.

Initial state x�1�=x� x�2�=x� x�3�=x� x�4�=x� x�5�=x� x�N�=x�

Chaotic update 1 f�x�� x� x� x� x� x�

Relaxation x� x�+ �
2

x� x� x� x�

Chaotic update 2 x� f�x�+ �
2

� x� x� x� x�

Relaxation x�+ ��
2

x� x�+ ��
2

x� x� x�

Chaotic update 3 x�+ ��
2

x� f�x�+ ��
2

� x� x� x�

Relaxation x� x�+ ��
4 + ��

2
x� x�+ ��

2
x� x�

Chaotic update 4 x� x�+ ��
4 + ��

2
x� f�x�+ ��

2
� x� x�

Relaxation x�+ ��
8 + ��

4
x� x�+ ��

8 + ��
4 + ��

2
x� x�+ ��

2
x�
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total excess above the fixed point that is generated by the
chaotic updates. The dissipation of this disturbance is
achieved by transporting the excess from the open edges. For
the case of synchronous updating, on an average, excess of
the order of N� is created after every chaotic update, while
only that of the order of � �i.e., � /2 from each edge� is
transported out every relaxation step. So the perturbation
cannot die down when r�1. For asynchronous updating
�random or sequential� on the other hand, the total excess
created is of the order of � every chaotic update and typically
a similar amount gets transported out of the open edges after
each chaotic update. So statistically speaking there is a
steady state between the generation of disturbance and the
transport of the perturbing amount from the open system.
This allows the system to be much more ordered than the
synchronously evolving system.

Qualitatively speaking then, asynchronous updating is
akin to the slow driving limit of the perturbation due to the
intrinsic local chaos. Asynchronous evolution is similar to
the driving in the “sandpile model” where the “grains of
sand” are sprinkled one by one, rather than being poured
down on the entire pile at once, i.e., the extrinsic driving is
dilute. In our case, the local instabilities induced by the in-
ternal chaos, have an effectively slower time scale when they
occur asynchronously, as asynchronous local chaos triggers
threshold-activated interactions between the elements more
sparsely in the lattice than synchronous local chaos, where

all sites can go critical together. So asynchronous evolution
gives the relaxation process more time to bring order and
organization.

VII. CONCLUSIONS

We have studied a general class of models incorporating
threshold-activated coupling on a lattice of chaotic elements,
under varying degrees of asynchronicity in the updating
rules. In fact in the absence of a global clock, asynchronicity
is expected to be very natural in the evolution of large inter-
active systems. From our study it is evident that the degree
of asynchronicity in the evolution of the local dynamical
components of the extended system crucially determines the
spatiotemporal dynamics of the system. So, though it has
been studied little so far �compared to the extensive literature
on models implementing parallel updating�, our results pro-
vide indications that the updating mechanism is a very im-
portant issue, and needs to be understood.

The central observation, borne out by our extensive simu-
lations, is that asynchronous updating favors synchroniza-
tion. Further the order induced by random asynchronous up-
dating is very robust, and occurs even for small
asynchronicities in the temporal evolution of the local dy-
namics. So this suggests a very different mechanism for in-
ducing regularity in physical and biological systems.
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